sábado, 17 de noviembre de 2012

AVANCES TECNOLOGICOS EN LA ELECTRICIDAD


Basura Convertida en Energía Eléctrica
Se trata de un proceso respetuoso con el medio ambiente que da una nueva utilidad a los residuos orgánicos generados por la actividad humana, sin duda la materia prima más barata de la que disponemos para producir energía.


El uso del biogás, obtenido a partir de la materia orgánica, resulta una opción muy interesante desde el punto de vista ambiental; la biomasa es un recurso renovable que puede utilizarse como materia prima en sustitución de otras fuentes de energía con un mayor impacto sobre el medio ambiente y la salud, como es el caso de los combustibles fósiles. Además, ésta permite evitar la emisión a la atmósfera de gases de efecto invernadero, sobre todo metano, que suelen generarse en cualquier vertedero.


Aunque no podemos decir que esta materia tenga capacidad suficiente para sustituir a otras fuentes de energía más contaminantes, es razonable afirmar que la suma de formas sostenibles de generar energía sí puede ser una alternativa real. Todo esfuerzo por impulsar y apoyar nuevas fórmulas contribuirá, por tanto, a encontrar nuevas soluciones más viables al problema energético. La obtención de electricidad a través del biogás de los residuos urbanos se ajusta perfectamente a los criterios definidos para lograr un desarrollo sostenible, dado que el impacto ambiental de la generación de energía es mínimo.


Además, la materia prima tiene un coste relativamente bajo, ya que se reutiliza un residuo y, al mismo tiempo, se reduce la emisión de elementos contaminantes a la atmósfera.
El proceso para la producción de electricidad tiene su comienzo en los vasos donde se depositan los residuos urbanos. Durante su descomposición, estos materiales producen un gas que se recupera a través de pozos y se conduce por una compleja red de tuberías hasta la planta de aprovechamiento energético. Entonces, esta materia es aprovechada y tratada para generar energía eléctrica.


La última fase está destinada a la generación de energía, y finaliza en un centro de transformación. Allí, toda esa electricidad generada se exporta a la red externa de abastecimiento de la compañía eléctrica para que pueda ser consumida.

Esta tecnología tiene un futuro muy amplio. Podrá utilizarse en los basureros para desintegrar toda la basura que generan las grandes ciudades, y así, al ser Convertidores de Plasma tan grandes, también podría generar electricidad para esas mismas ciudades.

Corriente Inalámbrica
Un paso hacia la utopía de no volver a conectar nuestros electrodomésticos o aparatos eléctricos/elctrónicos ha sido desarollado por un grupo de investigadores del MIT (una de las mejores universidades tecnológicas del mundo) basados en las ideas del Físico del siglo XIX – XX Nikola Tesla.


Marin Soljacic, profesor e investigador del MIT ha venido trabajando en este sistema de Electricidad Inalámbrica conocido como Wi-tricity (Wireless Electricity).
Usando el principio de resonancia con una baja frecuencia es posible amplificar enormemente la distancia a la cual puede ser llevada un voltaje inducido, lo más importante de esto es que dicho voltaje tiene la suficiente magnitud para el desarrollo de aplicaciones interesantes como encender una bombilla de 60 Watts a más de dos metros de distancia.


Tesla en sus experimentos logró encender una bombilla que sostenía en su mano ubicada a varios kilómetros de una gran bobina Tesla, dicho aparato alimentado a una red eléctrica local, puede tomar su señal y reducir en ella gradualmente la corriente, aumentando enormemente el voltaje, pero las dimensiones del aparato son cercanas a los 25 metros de altura.


Casi nada en compración a eso es el tamaño de este nuevo sistema, que consta de un transmisor conectado a la red eléctrica y diversos adaptadores para recibir el voltaje inducido, generar en ellos una corriente que alimentará los dispositivos, el aire sirve como dieléctrico y los muros y campos eléctricos de otros dispositivos no crean interferencia o atenuaciòn. Dada la resistencia eléctrica del cuerpo humano y la baja frecuencia usada para crear resonancia, estamos excentos de posibles efectos por el uso de esta tecnología.

Coches Eléctricos y Desarrollo Sostenible

La clave para la lucha contra el cambio climático estriba en una tecnología mejor. Tenemos que encontrar nuevas formas de producir y utilizar la energía, satisfacer nuestras necesidades alimentarias, trasladarnos de un lugar a otro y calentar y refrescar nuestros hogares, que nos permitan reducir el consumo de petróleo, gas, carbón, fertilizantes de nitrógeno y otras fuentes de gases que provocan el efecto de invernadero. Una de las novedades más interesantes que se perfilan en el horizonte es la nueva generación de automóviles eléctricos.



En primer lugar, habrá muchos tipos de vehículos eléctricos, incluidos el eléctrico híbrido, el vehículo sólo con batería y los vehículos propulsados por células de combustión de hidrógeno, esencialmente una batería alimentada por una fuente externa de hidrógeno. Esos diferentes vehículos podrán aprovisionarse en innumerables fuentes energéticas.



Las electricidades solar, eólica y nuclear -todas ellas carentes de emisiones de CO2- pueden alimentar la red energética que recargará las baterías. Asimismo, se pueden utilizar esas fuentes energéticas renovables para dividir el agua en hidrógeno e iones de hydroxyl y después utilizar el primero para propulsar las células de combustión de hidrógeno.



En segundo lugar, la capacidad de almacenamiento de la flota de vehículos desempeñará un papel importante en la estabilización de la red energética. No sólo los vehículos propulsados por batería obtendrán corriente de la red eléctrica durante la recarga, sino que, además, cuando estén estacionados, podrán devolver la electricidad suplementaria a la red durante los periodos de mayor demanda.



En tercer lugar, los vehículos propulsados por electricidad harán posible un nuevo mundo de vehículos "inteligentes", en los que los sistemas de sensores y las comunicaciones de vehículo a vehículo permitirán la protección contra las colisiones, la distribución del tráfico y la dirección remota del vehículo.



La nueva era del vehículo eléctrico ejemplifica las importantes oportunidades que podemos aprovechar, mientras avanzamos desde la insostenible era de los combustibles fósiles hasta una nueva era de tecnologías sostenibles.



Sin embargo, la concepción del automóvil de Burns nos recuerda que la transición a la sostenibilidad puede aportar avances reales en la calidad de vida, cosa que es aplicable no sólo a los automóviles, sino también a la elección de sistemas energéticos, diseños de edificios, planificación urbanística y sistemas alimentarios.



Debemos replantearnos la amenaza climática como una oportunidad para la transformación y la cooperación mundiales en una serie de avances tecnológicos a fin de lograr el desarrollo sostenible. Mediante ingeniería de última hora y nuevos tipos de colaboración entre el sector privado y el público, podemos acelerar la transición a escala mundial a tecnologías sostenibles, con beneficios tanto para los países pobres como para los ricos, y con ello encontrar una base para acuerdos mundiales sobre el cambio climático que hasta ahora han resultado esquivos.

Características de un Vehículo Eléctrico:



Conversión de Energía Termal del Oceano en Eléctrica
Utilizar el océano como un gigantesco colector de energía solar térmica es el objetivo del sistema denominado "Conversión de la Energía Termal del Océano" (OTEC). Sus defensores aseguran que podría cubrir las necesidades energéticas de todo el mundo y ofrecer otras aplicaciones. El calor oceánico podría utilizarse para sistemas de aire acondicionado, desarrollar granjas agrícolas y piscifactorías, producir agua dulce desalada, extraer minerales o luchar contra el cambio climático. A pesar de su potencial, las instalaciones de OTEC se mueven a nivel experimental o en fase de proyecto. Pero los costos crecientes de los combustibles fósiles y el interés por las energías ecológicas han revivido hoy en día su interés.

El sistema de OTEC pretende aprovechar el calor oceánico como una fuente energética ecológica. Sus defensores aseguran que es constante y permanente, a diferencia de otras energías renovables, como la eólica o la fotovoltaica. Pero no vale cualquier zona: estas instalaciones se basan en la diferencia de temperatura, de al menos 20 grados, entre la superficie y el fondo de los océanos.

Según estimaciones del Laboratorio Nacional de Energía Renovable (NREL) de EE.UU., en un día medio, 60 millones de kilómetros cuadrados de los mares tropicales absorben una cantidad de radiación solar equivalente en energía a unos 250 millones de barriles de petróleo. Si el 0,1% de esa energía solar almacenada podría convertirse en energía eléctrica, podría abastecerse en más de 20 veces el consumo total de electricidad de EE.UU. La Ocean Energy Council, una organización sin ánimo de lucro para el aprovechamiento de la energía oceánica, calcula que con el 1% de la energía generada por la OTEC se cubriría entre 100 y 1.000 veces el consumo eléctrico actual mundial.

Tipos de sistemas de OTEC:

1. Ciclo cerrado: el agua caliente de la superficie del mar es bombeada con un intercambiador de calor que vaporiza un fluido con un punto de ebullición bajo (amoníaco o freón). El vapor en expansión mueve un turbo-generador y origina electricidad.

2. Ciclo abierto: el agua caliente se coloca en un recipiente de baja presión para que hierva. El vapor en expansión impulsa una turbina conectada a un generador eléctrico. El vapor de agua se condensa de nuevo en un líquido por la exposición a bajas temperaturas de las aguas profundas del océano.

3. Híbrido: combina las características de los dos sistemas anteriores. El agua caliente se introduce en una cámara de vacío para su evaporación, con un método similar al de ciclo abierto. El vapor de agua evapora un líquido de bajo punto de ebullición en un circuito de ciclo cerrado que mueve una turbina para producir electricidad.

La electricidad generada en estas plantas se podría utilizar para producir otros combustibles y productos, como hidrógeno, amoniaco o metanol. Las instalaciones de OTEC de ciclo abierto o híbridas pueden producir grandes cantidades de agua dulce. En teoría, una instalación de 2 megavatios podría producir unos 4.300 metros cúbicos de agua desalada diarios.

La mayoría de las plantas de OTEC se instalarían en zonas tropicales de alta mar, lejos de los consumidores. Sus defensores argumentan que como todo sistema experimental, los comienzos son muy costosos. El desarrollo tecnológico y la subida de los precios de los combustibles fósiles, así como sus otras posibles aplicaciones, podrían hacerlo más competitivo y reducir su impacto ambiental.
 
 
En este video podemos observar como generar energia pero sin dañar el medio ambiente
 
 
 
 
 
 
 
MARTERIALES Y SUS UTILIDADES

ALICATES

Herramienta de mano formada principalmente por dos partes, una por donde se gobierna y sujeta con la mano llamada mango, y otro la útil o parte por donde se efectúan los distintos trabajos.
Los alicates se emplean para retener cables y moderarlos, sostener o
alcanzar tuercas o arandelas pequeñas. Los hay de varios tipos:
Alicates universales: se componen de tres partes diferenciadas. Una pinza robusta para trabajar sobre conductores gruesos; unas mandíbulas estriadas y una sección cortantes.

Es muy utilizada en todos aquellos trabajos en los que haya que efectuar considerables esfuerzos mecánicos, tales como:
  • Cortado de conductores de gran sección.
  • Sujeción de conductores eléctricos.
  • Tensado de conductores.
  • Doblado de materiales conductores.

Alicates de tijas cónicas: consiste en dar la forma adecuada a los
terminales de los conductores que deban fijarse con tornillos.
Alicates de punta: alicates que tienen superficies de contacto planas y en su extremo más distal es de forma redondeada para poder realizar trabajos de precisión. Algunas de sus aplicaciones son:
- Realización de bordes anillados en hilos conductores.
Alicates de punta cigüeña: está formado por dos puntas en forma de pico de cigüeña, donde su extremo más distal se encuentra doblado. Cada una de sus puntas de contacto contiene un semicírculo acuñado. Sus aplicaciones son:

  • Sujeción momentánea de tornillos para poder atornillarlos en lugares de difícil acceso.
  • Bornes anillados en lugares de difícil acceso.
  • En definitiva, cualquier trabajo que precise una presión y en posiciones que dificulten el trabajo de herramientas más cortas.

Alicates de punta plana: alicates con superficies de contacto totalmente
planas. Su uso es muy similar al alicate universal.
Alicates de corte: alicates con superficies acuñadas con la utilidad de cortar hilos, cables o similares.

Pinzas desnudadoras: aunque no son propiamente alicates, su función está muy emparentada con la suya. Se emplean para eliminar la protección aislante de los conductores.

DESTORNILLADORES O ATORNILLADORES

Existen muchos tipos de destornilladores; en principio, los más utilizados son los destornilladores de punta plana y los de estrella o Philips.

Atornillador de punta plana: su uso está indicado en introducir y apretar o extraer y aflojar todo tipo de tornillos con ranura en la cabeza apropiada.

Como existe mucha diferencia en cuanto a dimensiones y grosor de los tornillos en el mercado, habrá muchos tipos de destornilladores dependiendo de sus dimensiones.

Para evitar electrocuciones, algunos destornilladores empleados en trabajos de naturaleza eléctrica van recubiertos de una capa de material plástico aislante no sólo en el mango, sino también en la mayor parte del cuello de metal.

Atornillador de estrella o Philips: este otro tipo de destornilladores es muy empleado actualmente. La forma de la punta es en cruz. La forma de utilización es la misma que la del atornillador de punta plana o clásica.


DETECTOR DE TENSIÓN

Conocido popularmente como buscapolos, es una herramienta de gran utilidad.

Se trata de una especie de destornillador, pero además tiene una utilización muy definida. Esta utilización es la de comprobador de tensión en los enchufes como aparatos eléctricos.

Está compuesto de un mango de plástico transparente, en cuyo interior se encuentra alojada una lámpara de neón que se enciende cuando la punta entra en contacto con la fase del enchufe y cuando uno de los dedos de la mano
hace contacto con la chapa metálica de la parte más posterior del
destornillador-buscapolos.


CUCHILLO DE ELECTRICISTA

Navaja o cuchilla de forma recta con filo a todo lo largo de la hoja de acero. Está provisto de un mango de madera que va unido a la hoja de acero por medio de remaches. Se emplea para pelar cables e hilos, y también para raspar el esmalte de los conductores para poder después emparmarlos o
soldarlos.

PELACABLES Y REMACHADORES.

Son herramientas con utilidad de pelar cables y remachar terminales especiales para su posterior unión eléctrica. Hay pelacables de diferentes tipos, de los cuales mostramos tres:

Cortacables-pelacables-remachador: Instrumento muy común que tiene la posibilidad de pelar y cortar hilos y cables, y además también tiene la posibilidad de remachar terminales.

Cortacables-pelacables: Instrumento de morfología totalmente diferente al anterior pero prácticamente con las mismas características, salvo la de remachar.

Cortacables-pelacables: Instrumento básico de corte y pelado de hilos y cables.

TIJERA ELECTRICISTA

Herramienta manual utilizada por los electricistas para los trabajos de cortado de cables finos y pelado de conductores. Está compuesta por dos piezas, cada una de las cuales tiene una zona cortante y otra de manipulación. Estas dos piezas van unidas gracias a un tornillo o remache.

PINZAS

Instrumento de diversas formas cuyos extremos posteriores se aproximan para sujetar alguna cosa.

Pinzas universales: estas pinzas al presionar ambos brazos, se aproximarán los extremos.

Pinzas en ocho: al presionar ambos brazos, se separan los extremos.

Hay también pinzas diferentes en cuanto a tamaño y en la forma de sus extremos: planas, curvas, dentadas, lisas, etc.


REGLA

Regla métrica graduada en centímetros y en pulgadas.

METRO

Instrumento de medida que se utiliza para medir la distancia entre dos puntos.

ESCUADRA GRADUADA CON TACON

Esta herramienta va a ser muy utilizada en varios trabajos de taller, ya que con ella podemos realizar medidas, marcas, comprobar planicies y poner caras a escuadra.
Esta escuadra está formada por dos lados de 90º, unos de los uales está graduado, haciendo así las funciones de una regla graduada; al otro ladose le conoce como tacón de la escuadra, llamándole tacón a inglete porque tiene una sección a 45º en la junta de los dos lados.

NIVEL

Aparato utilizado para verificar la correcta posición de los elementos eléctricos. Se compone de un soporte metálico o lástico y una ampolla de vidrio marcada, y llena de líquido, con una burbuja de aire que a su vez marcará el nivel.

GRANETE
Herramienta manual fabricada con un acero de aleación especial de gran resistencia ya que se utiliza para realizar hendiduras sobre materiales que pueden tener una dureza considerable.

PUNTA TRAZADORA

Herramienta empleada para trazar o marcar líneas de referencia. Está compuesta de una varilla acodada, cuyos extremos terminan en una punta muy aguda.


MARTILLO DE ELETRICISTA

Herramienta manual utilizada para golpear, compuesta de una maza-martillo y un mango de madera por donde se gobierna.

SOLDADOR ELÉCTRICO

Herramienta de electricista empleada para soldar, ayudándose del estaño, todo tipo de empalmes, conexiones, etc.

Existen varios tipos de soldadores: pueden ser de calentamiento por inducción, por resistencia, etc.El más empleado es el de calentamiento por medio de resistencia, funcionando de la siguiente forma: se conecta el soldador a la red
generadora de tensión propia de la resistencia de calentamiento; esta resistencia está enrollada sobre un material aislante y se encuentra dentro de la varilla de cobre que se calienta. Para soldar se pone la varilla de cobre en contacto con los elementos o partes metálicas que se desean soldar y con el estaño, de tal forma que el estaño se derretirá y se propagará entre las dos partes previamente calentadas. Después se aparta el soldador y, gracias a ladisminución de la temperatura, el estaño volverá a solidificar, aunque ahora formará parte de un contacto eléctrico.

CINTA AISLANTE

Cinta adhesiva que se utiliza para aislar conexiones y empalmes. Se envuelve con cinta aislante de PVC toda la zona de empalme, rebasándola inclusive por ambos extremos, de forma que se cubra también parte del propio aislamiento del conductor. Puede ser de material plástico, polivinilo, etc. Es flexible y tiene una cierta resistencia mecánica.

LLAVE FIJA

Es un utensilio que se utiliza en la electricidad para aflojar y apretar tuercas.

ELEMENTOS COMPLEMENTARIOS

- Es importante contar con una linterna portátil. Resultara muy útil si se ha de hacer reparaciones eléctricas cuando ya no hay luz natural y es necesario cortar el fluido.

- Un serrucho será un buen complemento ya que hay trabajos de electricidad para los que es necesario cortar madera, metal o plástico.

- El taladro manual se puede emplear para pequeñas perforaciones y en materiales delgados. También se puede utilizar para hacer agujeros en la pared, siempre que no sea de gran envergadura.
- Un cúter, que también podemos emplear para desnudar cables.


Materiales de la Electricidad

COMO GENERAR ENERGIA





Modo de combustible y generar energia




Energia y su transformacion



Miniconcentradores solares para generar
electricidad






 



 
 
 
 
 
 

comienzos de la electricidad

Historia del Desarrollo de la Electricidad
 
Thales de Miletus (630-550 AC) fue el primero, que cerca del 600 AC, conociera el hecho de que el ambar, al ser frotado adquiere el poder de atracción sobre algunos objetos.
Sin embargo fué el filósofo Griego Theophrastus (374-287 AC) el primero, que en un tratado escrito tres siglos después, estableció que otras sustancias tienen este mismo poder, dejando así constancia del primer estudio cientifico sobre la electricidad.
 
En 1600
La Reina Elizabeth I ordena al Físico Real Willian Gilbert (1544-1603) estudiar los imanes para mejorar la exactitud de las Brújulas usadas en la navegación, siendo éste trabajo la base principal para la definición de los fundamentos de la Electrostática y Magnetismo.
Gilbert fue el primero en aplicar el término Electricidad del Griego "elektron" = ambar.
Gilbert es la unidad de medida de la fuerza magnetomotriz.
Brújula de 1562
 
 
En 1672

El Físico Alemán Otto von Guericke (1602-1686) desarrolló la primera máquina electrostática para producir cargas eléctricas.

Máquina que consiste de una esfera de azúfre torneada, con una manija a través de la cual, la carga es inducida al posar la mano sobre la esfera.

Guericke 
 
 
En 1733

El Francés Francois de Cisternay Du Fay (14/Sep/1698 - 1739) fue el primero en identificar la existencia de dos cargas eléctricas, las cuales denominó electricidad vitria y resinosa:

Positiva y Negativa.
En 1745

Se desarrolla lo que daría paso al Condensador Eléctrico, la botella de Leyden por E. G. Von Kleist (1700-1748) y Pieter Van Musschenbroeck (1692-1761) en la Universidad de Leyden, con esta botella se almacenó electricidad estática.

MusschenbroeckBotella de Leyden
 
En 1752

Benjamín Franklin (1706-1790) demostró la naturaleza eléctrica de los rayos.

Desarrolló la teoría de que la electricidad es un fluido que existe en la materia y su flujo se debe al exceso o defecto del mismo en ella. Invento el pararrayos.

En 1780 inventa los lentes Bifocales.

Franklin
 
En 1766

El Químico Joseph Priestley (1733-1804) prueba que la fuerza que se ejerce entre las cargas eléctricas varía inversamente proporcional a la distancia que la separan.

Priestley demostró que la carga eléctrica se distribuye uniformemente en la superficie de una esfera hueca, y que en el interior de la misma, no hay un campo eléctrico, ni una fuerza eléctrica.

Priestley descubrió el oxígeno.

Priestley
 
En 1776

Charles Agustín de Coulomb (1736-1806) inventó la balanza de torsión con la cual, midió con exactitud la fuerza entre las cargas eléctricas y corroboró que dicha fuerza era proporcional al producto de las cargas individuales e inversamente proporcional al cuadrado de la distancia que las separa.


Coulomb es la unidad de medida de Carga eléctrica.
 
En 1800

Alejandro Volta (1745-1827) construye la primera celda Electrostática y la batería capaz de producir corriente eléctrica. Su inspiración le vino del estudio realizado por el Físico Italiano Luigi Galvani (1737-1798) sobre las corrientes nerviosas-eléctricas en las ancas de ranas.

Galvani propuso la teoría de la Electricidad Animal, lo cual contrarió a Volta, quien creía que las contracciones musculares eran el resultado del contacto de los dos metales con el músculo.

Sus investigaciones posteriores le permitieron elaborar una celda química capaz de producir corriente contínua, fue así como desarrollo la Pila.

Volt es la unidad de medida del potencial eléctrico (Tensión).




Desde 1801 a 1815

Sir Humphry Davy (1778-1829) desarrolla la electroquímica (nombre asignado por él mismo), explorando el uso de la pila de Volta o batería, y tratando de entender como ésta funciona.

En 1801 observa el arco eléctrico y la incandescencia en un conductor energizado con una batería.

Entre 1806 y 1808 publica el resultado de sus investigaciones sobre la electrólisis, donde logra la separación del Magnesio, Bario, Estroncio, Calcio, Sodio, Potasio y Boro.

En 1807 fabrica una pila con más de 2000 placas doble, con la cual descubre el Cloro y demuestra que es un elemento, en vez de un acido.

En 1815 inventa la lámpara de seguridad para los mineros.

Sin ningun lugar a duda, el descubrimiento más importante lo realiza ese mismo año, cuando descubre al joven Michael Faraday y lo toma como asistente.

DavyLámpara de Seguridad de Davy



En 1812

El matemático Francés Siméon-Denis Poisson (1781-1849) publicó su trabajo más importante relacionado con la aplicación matemática a la Electricidad y Magnetismo, describiendo la leyes de la electrostática.

Poisson



En 1819

El científico Danés Hans Christian Oersted (1777-1851) descubre el electromagnetismo, cuando en un experimento para sus estudiantes, la aguja de la brújula colocada accidentalmente cerca de un cable energizado por una pila voltáica, se movió. Este descubrimiento fué crucial en el desarrollo de la Electricidad, ya que puso en evidencia la relación existente entre la electricidad y el magnetismo.

Oersted es la unidad de medida de la Reluctancia Magnética.




En 1820

Jean-Baptiste Biot (1774-1862) y Felix Savart (1791-1841) Franceses, determinan la conocida ley de Biot-Savart mediante la cual, calculan la fuerza que ejerce un campo magnético sobre una carga eléctrica y definen que la intensidad del campo magnético producido por una corriente eléctrica es inversamente proporcional al cuadrado de la distancia.

Biot



En 1823

William Sturgeon (1753-1850) Inglés construye el primer electroimán.

Electroimán



En 1823

Andre-Marie Ampere (1775-1836) establece los principios de la electrodinámica, cuando llega a la conclusión de que la Fuerza Electromotríz es producto de dos efectos: La tensión eléctrica y la corriente eléctrica. Experimenta con conductores, determinando que estos se atraen si las corrientes fluyen en la misma dirección, y se repelen cuendo fluyen en contra.

Ampere produce un exelente resultado matemático de los fenómenos estudiados por Oersted.

Ampere es la unidad de medida de la corriente eléctrica.




En 1826

El físico Alemán Georg Simon Ohm (1789-1854) fué quien formuló con exactitud la ley de las corrrientes eléctricas, definiendo la relación exacta entre la tensión y la corriente. Desde entonces, esta ley se conoce como la ley de Ohm.

Ohm es la unidad de medida de la Resistencia Eléctrica.

R= V / IOhm = Volt / Amper



En 1828

El matemático Inglés George Green (1793-1841) publicó el trabajo "An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism" en el cual amplió el trabajo de Poisson obteniendo una solución general para el cálculo de los potenciales.

Commemorado con una placa en el piso de la abadía de Westminster.



En 1828

El Americano Joseph Henry (1799-1878) perfeccionó los electroimanes, observó que la polaridad cambiaba al cambiar la dirección del flujo de corriente, y desarrolló el concepto de Inductancia Propia. En 1846 fue nombrado como el primer Director del Museo Smithsonian.

HenryBobinas de Henry



En 1831

Michael Faraday (1791-1867) a los 14 años trabajaba como encuadernador, lo cual le permitió tener el tiempo necesario para leer y desarrollar su interes por la Física y Química. A pesar de su baja preparación formal, dió un paso fundamental en el desarrollo de la electricidad al establecer que el magnetismo produce electricidad a través del movimiento.

Faradio es la unidad de medida de la Capacitancia Eléctrica.

La tensión inducida en la bobina que se mueve en campo magnético no uniforme fue demostrada por Faraday, en un aparato como el que se muestra.

Faraday Primer Generador Eléctrico



En 1835

Samuel F.B. Morse (1791-1867), mientras regresaba de uno de sus viajes, concibe la idea de un simple circuito electromagnético para transmitir información, El Telégrafo.

En 1835 construye el primer telégrafo.

En 1837 se asocia con Henry y Vail con el fin de obtener financiamiento del Congreso de USA para su desarrollo, fracasa el intento, prosigue solo, obteniendo el exito en 1843, cuando el congreso le aprueba el desarrollo de una línea de 41 millas desde Baltimor hasta el Capitolio en Washingto D.C.

La cual construye en 1844.

Morse

" Transmisor y receptor desarrollados 1844 por Morse. Museo Smithsonian"

Primer Mensaje transmitido


En 1858 ATC The American Telegraph Company construye el primer cable transatlántico desde la costa este de USA hasta Irlanda.



En 1840-42

James Prescott Joule (1818-1889) Físico Inglés, quien descubrió la equivalencia entre trabajo mecánico y la caloría, y el científico Alemán Hermann Ludwig Ferdinand Helmholtz (1821-1894), quien definió la primera ley de la termodinámica demostraron que los circuitos eléctricos cumplían con la ley de la conservación de la energía y que la Electricidad era una forma de Energía.

Adicionalmente, Joule inventó la soldadura eléctrica de arco y demostró que el calor generado por la corriente eléctrica era proporcional al cuadrado de la corriente.

Joule es la unidad de medida de Energía.

JouleHelmhotz





En 1845

Gustav Robert Kirchhoff (1824-1887) Físico Alemán a los 21 años de edad, anunció las leyes que permiten calcular las corrientes, y tensiones en redes eléctricas. Conocidas como Leyes de Kirchhoff I y II.

Estableció las técnicas para el análisis espectral, con la cual determinó la composición del sol.

Kirchhoff





En 1847

William Staite (1809-1854) Inglés recibió el crédito por el desarrollo de la Lámpara de Arco. Estas lámparas fueron comercialmente utilizadas a partir de 1876 con las mejoras introducidas por el Ruso Paul Jablochkoff (1847-1894).

Experimentado su apogeo entre 1880 y 1890.

Lámparas de Arco



En 1854

El matemático Inglés William Thomson (Lord Kelvin) (1824-1907), con su trabajo sobre el análisis teórico sobre transmisión por cable, hizo posible el desarrollo del cable transatlántico.

En 1851 definió la Segunda Ley de la Termodinámica.

En 1858 Inventó el cable flexible.

Kelvin es la unidad de medida de temperatura absoluta.

Lord Kelvin



En 1859

El Científico Alemán Julius Plücker (1801-1868) descubrió los Rayos Catódicos.

Plucker.jpg (1530 bytes)Julius Plücker



En 1868

El Científico Belga Zénobe-Théophile Gramme (1826-1901) construyó la primera máquina de corriente contínua El Dinamo punto de partida de la nueva industria eléctrica. En 1870 patentó la teoría de la Máquina magneto-eléctrica para producir corriente contínua.

GrammeDinamo



En 1870

James Clerk Maxwell (1831-1879) Matemático Inglés formuló las cuatros ecuaciones que sirven de fundamento de la teoría Electromagnética. Dedujo que la Luz es una onda electromagnética, y que la energía se transmite por ondas electromagnéticas a la velocidad de la Luz

Maxwell es la unidad del flujo Magnético.





En 1876

Alexander Graham Bell (1847-1922) Escocés-Americano inventó el Teléfono.

Bell



En 1879

El Físico Inglés Joseph John Thomson (1856-1940) demostró que los rayos catódicos estaban constituido de partículas atómicas de carga negativas la cual el llamo ¨Corpúsculos¨ y hoy en día los conocemos como Electrones.



En 1881

Thomas Alva Edison (1847-1931) produce la primera Lámpara Incandescente con un filamento de algodón carbonizado. Este filamento permaneció encendido por 44 horas.

En 1881 desarrolló el filamento de bambú con 1.7 lúmenes por vatios. En 1904 el filamento de tungsteno con una eficiencia de 7.9 lúmenes por vatios. En 1910 la lámpara de 100 w con rendimiento de 10 lúmenes por vatios.

Hoy en día, las lámparas incandescentes de filamento de tungsteno de 100 w tienen un rendimiento del orden de 18 lúmenes por vatios.



En 1882 Edison instaló el primer sistema eléctrico para vender energía para la iluminación incandescente, en los Estados Unidos para la estación Pearl Street de la ciudad de New York.

El sistema fue en CD tres hilos, 220-110 v con una potencia total de 30 kw.



En 1884

Heinrich Rudolf Hertz (1847-1894) demostró la validez de las ecuaciones de Maxwell y las reescribió, en la forma que hoy en día es conocida.

En 1888 Hertz recibió el reconocimiento por sus trabajos sobre las Ondas Electromagnéticas: propagación, polarización y reflexión de ondas.

Con Hertz se abre la puerta para el desarrollo de la radio.

Hertz es la unidad de medida de la frecuencia.



En 1884

John Henry Poynting (1852-1914) Físico Inglés, alumno de Maxwell. Publicó un artículo en el cual demostró que el flujo de Energía podía calcularse mediante una ecuación que representa la interrelación entre el campo Eléctrico y Magnético. Ecuación que representa el llamado Vector de Poynting

Poynting



En 1888

Nikola Tesla (1857-1943) Serbio-Americano inventor e investigador quien desarrolló la teoría de campos rotantes, base de los generadores y motores polifásicos de corriente alterna.

A Tesla se le puede considerar, sin ninguna duda, como padre del sistema eléctrico que hoy en día disfrutamos.

Tesla es la unidad de medida de la densidad de flujo magnético.

TeslaMotor C.A.

Algunas de sus patentes (+700):

En 1888 Motor de inducción, la mejora del dinamo, el metodo para convertir y distribuir corrientes eléctricas.

En 1890 el Motor de corriente alterna.

En 1892 el Sistema de transmisión de potencia.

En 1894 el Generador eléctrico.

En 1896 el Equipo para producir corrientes y tensiones de alta frecuencia.

En 1897 mejoras en el transformador eléctrico.

Los derechos de sus patentes sobre sus sistemas de corriente alterna, transformadores, motores y generadores, los vendió a George Westinghouse (1846-1914) fundador de Westinghouse Company, pionera en el desarrollo comercial de la corriente alterna.

En 1893 en la feria de Chicago Westinghouse y Tesla presentaron todo un sistema eléctrico en CA a escala a fin de demostrar sus bondades.

George Westinghouse

En 1895 Westinghouse pone en servicio la Primera planta de Generación de Electricidad comercial en C.A. La Planta del Niagara.

Feria de Chicago 1893 Niagara